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Abstract. We find the differential equation for the generating function of a'multiplicative 
stochastic process and we apply to it the group analysis. We give the general form of the 
Lie generators and find the conditions forthe existence of similarity solutions. Two classes 
of similarity solutions are presented and the analytic expression of the generating function 
is given. 

The behaviour o f  nonlinear dyhamical systems subjected to multiplicative noise has 
been the subject o f  increasing interest in recent years [l-31, because of the peculiar 
role of this type of noise. In the framework of nonlinear systems the presence of 
multiplicative fluctuations, due to an irregular influence imposed on the system from 
the environment to which it is coupled, can determine a behaviour qualitatively different 
from that which arises from an additive noise [2 ] .  A common way of dealing with the 
random processes defined by a multiplicative stochastic differential equation @DE) is 
to look for a solution of the corresponding Fokker-Planck equation (FP), which is 
statistically equivalent to the given SDE 141. 

Recently considerable attention has been paid to the determination of the general- 
ized symmetries and of similarity solutions of the one-dimensional Fokker-Planck 
equation 15-71, 

In this letter, using-the statistical properties of the Wiener process, we find the 
differential equation for the generating function (DEGF) of a multiplicative stochastic 
process and we investigate its invariance under continuous groups of transformations. 
Particularly, we get the conditions for the existence of similarity solutions and an exact 
analytic expression for the generating function using the constraints of analyticity and 
of the initial condition. As is well known the generating function contains all the 
statistical information on the system and its determination is directly relevant to 
measurable quantities. We want to point ont that this approach can be considered 
alternative to the direct investigation of the FP equation and can be very useful when 
the general solution of this equation is mathematically involved. Our starting point is 
the following SDE: 

-- dx(t) - [ b  + t( t)]x+ n 
dt 
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where o, b and e( t) stand, respectively, for an ignition parameter, a constant parameter 
and a white noise source satisfying 

(5 ( t ) )  = 0 (4( t)5( t" = E 6  ( t  - t') 

and E is the strength of the multiplicative noise. The equivalent Ito form of equation 
(1) is 

d x =  [ ( b +  ~ / 2 )  +&dWlx+a dt  (2) 

where W( t )  is the Wider process with the usual statistical properties. 

of the Wiener process: 
Integrating (2) and changing variable [SI we get the formal solution as a functional 

(3) x ( t )  = a  ebt'+Jhw(Z') dt'. lb 
Conversely using the Ito formuia of the stochastic calculus it is easy to show that 

differentiating equation (3) we obtain (2). To get the DEGF we use the differential 
equation of the moments (DEM) which can be easily obtained, as is well known, from 
the Fokker-Planck equation corresponding to our S D E  (2): 

, We present here an alternative derivation of the DEM based on the properties of 
the Winer process. In fact the increments of the Wiener process are statistically 
independent, therefore we can discretize the integral of equation (3) writing 

= lim [aAt(l+yz)]= lim aAQn 
At-Q AI-0 

N--  

where 

y ( t )  =exp[bAt+&'dw,(t)] 

z ( t )  = 1 +exp[bAt+& Aw2(t)l + expC2bAt +& Aw,(t)l+. . . (6) 

and 

N-I n 

n-1 1-1 
x N ( t ) = 1 +  edAt n eaA* I (  ' ) = 1 +yxN-, . (6a)  

y( t) and z( t )  are independent processes, and z( t) has the same probability distribution 
of the process x( t ) .  We now write equation (5 )  as a recurrence relation by using (6a) 
and taking the mean values of both sides: 

((xN-l)lc)=(Yx)~xL) 

but 
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therefore 

Now multiplying (7) by (aAt)*, using the identity 
k k (XN-A =(XN)t-*z 

and the well known Gaussian property of the Wiener process 

(yk) = ((exprb A t  + A w ] ) ~ )  = exp[ bkAt + k2/2At] 1 + bk + E - A t  + . . . [ 3 
retaining terms of order Af, we obtain the differential equation for the moments 

n = 1,2,. . . 
dt 

Therefore the differential equation for the generating function (DEGF) can be easily 
obtained as 

Following [8] the'group analysis of equation (9) is performed through the one- 
parameter Lie group of transformations: 

A ' = A + & A ( A ,  t, G, )+O(&~) 

f'=t+&T(A,t,G,)+o(E') (10) 

G: = G, + EG(A, t, G,) + o(E ' )  

where E is a continuous parameter and the group infinitesimals (A, T, G) must satisfy 
the following determining equations (the subscript meaning differentiation): 

A, ='TA = T, = GEg = O  (1lQ) 

-2A-AT,+ZAA=O ( 1 l b )  

(b+;)A-( b+:)AA, - E A ' G ~ ~ + - A ' A ~ ~  E -A, = 0 
2 

b+E E 
QAG - ngA - (T)AG* -5 AZOAA - aAgG, +2aAgAA + G, = 0 (1 I d )  

where g =  G. 'Integration of (l la) and ( l lb)  leads to the following form of the 
infinitesimal generators: 

T, A=-A In A +  C,(t)A 
2 

T =  r, 
G=A(A,t)g+B(A, t). 
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Without loss of generality we can set B(A, t )  =O. Substituting (12) into ( l l c )  and 
( l l d )  we obtain the conditions for the existence of similarity solutions: 

E 
AAA - aA-  aAT,-A, = 0 

2 

E 
- A 2 ( 2 A A - h ~ ~ ) +  
2 

Now we can easily deal with two particular cases and discuss briefly the correspond- 
ing solution. 

Case 1 
A = 1, T=constant= l /a .  The infinitesimal are 

A=O T= l / n  G = g  

and the invariants of the subgroup of transformations are: 

PI=,+ pz = g e-". 

We note that inspecting more closely the conditions (13) and (14), one easily sees 
that the only solution allowed is that obtained with C,( t )  = 0 and T, = 0, which leads 
to the 'trivial' solution, corresponding to a trivial symmetry. The similarity solution is: 

(15) 
and f ( A )  satisfies a differential equation leading to the Bessel differential equation 
through the product transformation 191 

g(A, t )  = C, e"lf(A) 

where: 

v =  (bZ / z2+2n/e )1 i2  (16') 
and I, is the modified Bessel function. To satisfy the constraint of analyticity for the 
generating function when A + 0, we reject the second linearly independent solution K ,  
and discretize the parameter U as: 

Then, because of the linearity of (9), we can construct an exact analytic expression 
for the generating function with the expansion 

where ak = k ( b + k ( & / 2 ) ) .  This is easily rewritten as follows: 
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by making a transformation of the parameter n as n = k +  1. Now using the following 
constraint on the generating function G, 

G,(A, 0) = (e-""')) = 1 

imposed by the initial condition of our stochastic process (3), we derive all the 
coefficients Ck of  the expansion (18): 

CO 2 c, E- l !  (-)(b E + E )  

li 

C, =s 2 !  (z) E (b +2&)[ ($+ l)] 
... 

(2 /~ ) ' -~ '* (b+  kE)r(Zb/&+ k )  
( -a)b/'k! 

Ck = 

and we finally obtain 

n ( - l ) ' ( b + k s ) r ( 2 b / ~ + k )  e"*' - A" 
n=o E h=o k T ( k  + n +2b/ 8 + 1) n!' GJA, t ) =  2 (')"+I U" 2 ( ) 

Then simply multiplying (20) by (-1)2" we obtain an exact analytical expression of 
the moments-of the process x ( t ) :  

" 
(21) 

n ( 2 ~ / ~ ) " ( 2 / & ) ( b + k s ) r ( 2 b / & + k )  eekf 
( k )  , T(k + n + 2b/E + 1) 

( x = ( t ) ) =  1 (-l)"-K 
k=O 

which is in agreement with theoretical results obtained using a different approach, 
independently by Suzuki et a1 [lo] and by Brenig and Banai [ll]. 

We note moreover that with this choice of parameters we can model the kinetics 
of a chemical system: the chlorite-thiosulfate reaction [12]. 

Case 2 
We assume in the original SDE a = 0, therefore equations (2) and (9) become 

dx = [(b+ ~/2)+&dWIx (22) 

and the stochastic process is 

x ( t )  = x(0) exp(bt+& W ( t ) )  (24) 
i.e. the well known linear multiplicative Gaussian Markov process. 

In this case SGme non-trivial symmetries can arise. Again using conditions (13) and 
(14) we get, after some algebra, the Lie generators of the symmetries of equation (23) 

A-BA T =  C G=Bg 
and the subgroup invariants 

-(B/C)t cLLz = * e - ( w c ) r  cL1-ge 
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and the similarity solution is 

g(A,r)=C,h"exp (27) 

where 

p = ? ( E + ? + b )  -= B a(as/2+b)  
E C 2  c (1-a) . 

With the same procedure of case 1, 'i.e. imposing the constraints of analyticity and 
of the initial condition, we obtain the generating function and the moments of the 
process (24) 

which can be put in a compact analytical expression using the integral representation 
of the exponential and resumming, as 

We want to remark finally that for a given choice of parameters of the original 
SDE, i.e. for a different physical model, we have a particular DEGF and a symmetry 
group within which other trivial and non-trivial symmetries can arise. 

Moreover, we think that this procedure can also be applied to determine the 
generating functions associated with nonlinear stochastic processes and with passage 
time statistics, which is a complementary point of view to describe the stochastic 
dynamics of a physi,cal system. 

Helpful and fruitful discussions with Professor F de Pasquale are gratefully ack- 
nowledged. This work is supported in part by the Italian Ministry of Education and 
the National Institute of Physics of Matter. 
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